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The machine stops?

(i)

There is a story, known to every child — at least, to every 
mathematical child — about a day in 1917, when G.H. Hardy 
went down into London to visit his friend the Indian prodigy 
Ramanujan. As Hardy tells it, he took a cab, and when he got 
there and greeted Ramanujan, he mentioned that the number of 
the cab had been 1729, and he was afraid that wasn’t very 
interesting. “No, Hardy,” Ramanujan instantly replied, “it is a 
very interesting number. It is the smallest number that is the sum 
of two cubes in two different ways.”1

Many years after this incident, I found myself sitting at a bar one 
morning around 2 a.m., talking to an attractive young lady. We 
were talking, mainly, about cleaning restaurants, since (of 
course) that was why we were there: the place had closed, the 
coke-dealing bartenders had gone home, the party was over,  and 
now we were responsible for the mess they’d left behind them; 
after we finished our coffee, at least. I made some ironic 
comment about how my mathematical education had prepared 
me for this task, and she remarked her complete ignorance in 
that regard. “I don’t even know my times tables,” she confessed. 
“Ah,” I said, “you mean the ones with multiplication in them.” 
“Yeah,” she said. “I don’t know anything. For instance that 
number there.” She pointed at a white plastic five gallon barrel 
on the floor behind the bar. It seemed to have originally been 
intended to hold pickles, but now it was employed as a trash can. 

 Once stated this fact is usually obvious to any mathematical child: 1729 = 1728 +1 = 1

1000 + 729. — Hardy later devoted a section of his classic treatise The Theory of 
Numbers to the more general problem of numbers which can be expressed as two cubes 
in n different ways.



“That number probably has a story behind it.” I looked at the 
barrel, and saw that there was some kind of serial number 
printed at the top. The number was 9232, and for the first, last, 
and only time in my life, I felt just like Ramanujan. “Yes,” I said. 
“It certainly does.”

(ii)

Pick a number (as they say), any number — meaning, a natural 
number, a positive integer. If it is even, divide by two. If it is odd, 
multiply by three and add one. Repeat, and if you reach one, 
stop. Does this process always terminate?

Observe first that

1 —> 4 —> 1

and therefore that it is more natural to ask whether the process 
terminates in a loop; this is confirmed by extending the domain 
to negative integers, where the list

-1 —> -1

-5 —> -7 —> -5

-17 —> -25 —> -37 —> -55 —> -41 —> -61 —> -91 —> -17

appears to be exhaustive.  (I employ the convention of skipping 2

the even numbers introduced and divided out in the intermediate 
steps.)

We then observe that the first few positive odd numbers reduce 
rapidly:

 It is absolutely typical of the investigation that I had an elegant proof of this 2

proposition which, at the very last moment, sprung a leak I’ve never managed to plug.



3 —> 5 —> 1

7 —> 11 —> 17 —> 13 —> 5 —> 1

15 —> 23 —> 35 —> 53 —> 5 —> 1

19 —> 29 —> 11 —> ...

21 —> 1

23 —> 35 —> ...

25 —> 19 —> ...

and that once we’ve arrived at a number we’ve already 
encountered, we can stop.

However (as I ascertained a couple of minutes after the problem 
was first explained to me, working through examples in my 
head)

27 —> 41 —> 31 —> 47 —> 71 —> 107 —> ...

and in fact though this process does terminate at 1, it takes 41 
steps (counting only the odd numbers.) 

The largest odd number in this trail is 3077, and thus the largest 
even number is 9232. 

Say that m arrows n (whether even or odd) if the process carries 
m into n; thus 3 arrows 5, 27 arrows 214 arrows 107, etc. Of the 
first million positive integers, then, 394059 arrow 9232. Of the 
first 10 million, 3935382. Of the first hundred million, 39311437. 
It is the Kevin Bacon of this graph. Asymptotically a bit more 
than 39 percent of all positive integers arrow 9232.



So, yes. This number does have a story behind it.

(iii)

Why should an arbitrary positive integer arrow 1?

Let us divide this into two separate propositions. We note first 
that if we commence the process with some arbitrary positive 
integer, either it increases indefinitely or it reaches an upper 
bound. In the latter case, obviously, the trail must terminate in a 
loop. So we want to prove that (1) every integer arrows some 
loop, and (2) that the only positive loop is

1—> 1

This suggests two natural generalizations of the problem: first, to 
negative integers, as already indicated; second, to rational 
numbers, since for any quotient of integers with numerator not 
divisible by 2 and denominator not divisible by 2 or 3 we can 
iterate the same mapping, e.g.

3/5—> 7/5—> 13/5—> 11/5—> 19/5—> 31/5—> 49/5—> 19/5

(For rational p/q this is equivalent to asking the question for 
integers with the mapping p —> (3p + q), p/2.)

In the case of the negative integers, there appear to be a finite 
number of possible loops (enumerated above); in the case of the 
rationals, this isn’t so.

Another natural generalization is to different multipliers, e.g. 
substituting 5 for 3, but it is easy to see that most of these 
variations blow up: starting with 7, for example, we have after a 
thousand iterations



177803902857476202974387921101853813205036988404708559
90801963848232141752912963628170933

and give up.

A halfassed probability argument shows when the process should 
be bounded: if we pick an odd number n at random, when we 
multiply by 3 and add 1 we get an even number every time, a 
number divisible by 4 half the time,  a number divisible by 8 one 3

quarter of the time, etc., so the expected value of the transform is 

meaning n stays about the same size on average. With a 
multiplier greater than 3, however, this will not be the case.

As one would expect of a conjecture such as this, dwarves toiling 
in the Mines of Moria have verified it for every positive number 
less than some prodigious figure,  with the usual result that 4

initial uncertainty about the truth or falsehood of the assertion 
has long since been replaced by frustration at being unable to see 
how to prove it. — I have personally tested random integers up 
to bounds on the order of (roughly ); and 
confirmed, incidentally, that the mean number of iterations 
required for arbitrary odd n is of the order of ; with the 
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 We wave our hands and assume the samples are independent. — More below.3

 I think this is currently on the order of a quintillion.4



worst-case exception of numbers of the form , which 
neatly double that estimate.5

Along one natural path of generalization the question rapidly 
devolves into a family of problems which can be shown to be 
unsolvable.  But there is another way to go about it, which seems 6

rather more interesting.

(iv)

Let us introduce a few notational conveniences. First, we 
annotate the arrows with the number of divisions they involve:

so that, for instance

Then we define

and note that it works out then that
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 A close examination of the statistics for numbers 2^n - 1 seems to show regularities 5

which might make explicit formulae possible, but it is easy to hallucinate patterns in 
large tables of large numbers.

 See John Conway, “On Unsettleable Arithmetical Problems.” The American 6

Mathematical Monthly, 120, No. 3 (March 2013), pp. 192-198. (“Unsettleable” is a 
neologism Conway introduces in this paper.)



in the sense of p-adic (here 2-adic) convergence; thus e.g. from

it follows that

from

it follows that

and so on.

Then it is not difficult to prove that:
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[1] As the 2-adic series indicates, the closer two numbers are 2-
adically,  the longer the agreement between their series of 7

divisors;

[2] The series is eventually periodic if and only if the series of 
divisors is recurrent; thus

[3] The process cycles if and only if the series of divisors is 
recurrent.8

Moreover

[4] All of the  solutions in positive integers to the equation

are represented by series of divisors for sequences

beginning with exactly half of the odd numbers
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 I.e. the larger the power of 2 that divides the difference between them. See Neal 7

Koblitz, P-adic Numbers, P-adic Analysis, and Zeta-functions, Springer-Verlag, 1984.

 I had some intuitive inkling of this several years before I worked it out in detail, when 8

one night after staggering home from a party I found I was too drunk to sleep and 
remembered this problem. It suddenly struck me very forcibly that the situation had to 
be analogous to that of the recurrent decimal expansion of a rational number, though I 
had no idea at the time how to derive any such expression. — It is one of the great 
mysteries about mathematical insight, that often you abruptly know the answer to 
something without having any idea what made you think of it or how you will prove it. 
(Of course we know how Plato explained this.)



The first few tables will illustrate the principle:
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Similarly one can show that in a sequence
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if and only if

This creates the possibility of another handwaving probability 
argument: let  be the smallest positive integer that does not 
reduce; then in any table in which  appears, the above 
inequality must hold. But one may ask what fraction of the 
solutions 

have the property that 

when n is large, and a calculation shows that it approaches 0. In 
this sense we can assert that the likelihood of any particular 
integer being  is vanishingly small.

 (v)

The 2-adic series suggests a generalization to arbitrary p which 
takes the following form: observe that the handwaving 
probability argument works just as well (or badly) if we suppose 
a mapping

n—>(p+1)n + r

where r is the one of 1,...,(p-1) that guarantees divisibility by p. 
Then if we write a sequence of such mappings 
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as

then

where again

Whether p really needs to be prime to allow us to interpret the 
series as p-adically convergent is a question whose discussion 
may be either postponed or ignored; suffice it that for arbitrary p 
the fundamental loop is

1 —> 2 —> ... —> (p - 1) —> 1

and for p from 2 to 101 based on a preliminary survey this 
appears to be the unique target in the cases
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i.e. in 77 instances; and while though an exhaustive listing of the 
23 others would probably constitute information overload, it is 
interesting to note that, in the four cases 12, 20, 24, and 54, there 
are at least two alternative terminal loops, and that the loop 
beginning on n = 3416 with p = 57 has 464 elements.

Thus we see that in general the natural conjecture is not that the 
target loop is unique, but that the number of such loops is finite.  9

Beyond that, however, it seems that a kind of caprice is at work, 
and it would be very difficult if not impossible to characterize 
exactly how the loops are determined.

The handwaving probability argument may be conservative, 
since the conjecture also appears to be true for some higher 
multipliers — e.g. the pairs (p + 2, p) for p less than 21, though 
of course with different targets; for (16,14) e.g. about ten percent 
of inputs arrow (1497 1711 1956 2236 2556 2922 3340 3818 
4364 4988 5701 6516 7447 8511 9727 11117 12706 14522 16597 
18969 21679 24777 28317 32363 36987 42271 48310 55212 
63100 72115 5887 6729 7691 8790 10046 11482 13123 14998 
17141 19590 22389 25588 29244 33422 38197 43654 49891 
57019 65165 74475 85115 97275 111172 127054 145205 165949 
189657 216751 17694 20222 23111 26413 30187 34500 39429 
45062 51500 58858 67267 76877 87860 100412 114757 131151 
149887 171300 195772 223740 255703 292233 333981 381693 
436221 498539 569759 46511 53156 60750 69429 79348 90684 
103639 118445 9669 11051 12630 14435 16498 18855 21549 
24628 28147 32169 36765 42018 48021 54882 62723 71684 
81925 93629 107005 122292 139763 159730 182549 14902 17031 
19465 1589 1817 2077 2374 2714 3102 3546 4053 4633 5295 
6052 6917 7906 9036 10327 11803 13490 15418 17621 20139 
23017 1879 2148 2455 2806 3207 3666 4190 4789 391 447 511 
585 669 765 875 1001 1145 1309). This suggests that some kind 

 Another natural question is how to distinguish those p for which the target loop is 9

unique. Of course I have no idea how to do that.



of statistical law is at work, and that there is a kind of phase 
transition between multipliers that converge and multipliers that 
blow up whose position shifts with each divisor.10

(v.1)

If for the mapping

we define a function

then a reasonable approximation might be

a functional equation which is not obviously solvable at first 
glance. But consider the guess11

Then we have
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 One could try to locate this more precisely by further randomizing the mapping by 10

selecting multipliers (p + 1), (p + 2), etc. according to a statistical distribution and 
determining the relationship between the mean multiplier and convergence behavior. 
But I have yet to be assailed by a fit of boredom of magnitude sufficient to motivate 
writing the code. Eventually, no doubt.

 Or “ansatz”, if you want to pretend we aren’t just bullshitting here.11



since

i.e.
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which for p = 2 does, indeed, imply that

The empirical evidence for larger p is less conclusive, but 
appears to favor the hypothesis.
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(vi)

If for a given sequence

we define the derived sequence  by forming the differences

where  are as usual the binomial coefficients, then the Euler 
transformation may be defined by the equivalence

Applying this to the series

we obtain
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Moreover we know from p-adic analysis that 

is recurrent if and only if 

is rational; again applying the Euler transform this is

From this we see that the proposition we are trying to establish is 
that, for any n, the derived function

has the property that  is rational if and only if   is 
rational; more, if  is a rational number, then  is a 
rational function.

Which neglects many details, but — well, more anon.

(vii)

As for the girl, we talked a while longer and then lapsed into 
silence. We were shy, I suppose, not looking at one another 
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directly. But since we were sitting at the bar, I could look up and 
glance into the mirror behind it to examine her. And when I did 
this I could see she was looking at me. — The people in the 
mirror had something rather different to say to one another, I 
thought. — Perhaps I anticipated what Otto Rank would tell me 
about The Student of Prague. Or perhaps I remembered what 
Borges claimed Bioy Casares had told him about the heresiarchs 
of Tlön: that mirrors and copulation were abominable, because 
they multiplied the numbers of mankind. 

Whatever. We ended up living together for seven years.


